Skip to main content

COVID-19 Coronavirus: Is Infection along with Mycoplasma or Other Bacteria Linked to Progression to a Lethal Outcome?

 Link to Article

Abstract

Most patients with COVID-19 disease caused by the SARS-CoV-2 virus recover from this infection, but a significant fraction progress to a fatal outcome. As with some other RNA viruses, co-infection or activation of latent bacterial infections along with pre-existing health conditions in COVID-19 disease may be important in determining a fatal disease course. Mycoplasma spp. (M. pneumonaie, M. fermentans, etc.) have been routinely found as co-infections in a wide number of clinical conditions, and in some cases this has progressed to a fatal disease. Although preliminary, Mycoplasmapneumoniae has been identified in COVID-19 disease, and the severity of some signs and symptoms in progressive COVID-19 patients could be due, in part, to Mycoplasma or other bacterial infections. Moreover, the presence of pathogenic Mycoplasma species or other pathogenic bacteria in COVID-19 disease may confer a perfect storm of cytokine and hemodynamic dysfunction, autoimmune activation, mitochondrial dysfunction and other complications that together cannot be easily corrected in patients with pre-existing health conditions. The positive responses of only some COVID-19 patients to antibiotic and anti-malaria therapy could have been the result of suppression of Mycoplasma species and other bacterial co-infections in subsets of patients. Thus it may be useful to use molecular tests to determine the presence of pathogenic Mycoplasma species and other pathogenic bacteria that are commonly found in atypical pneumonia in all hospitalized COVID-19 patients, and when positive results are obtained, these patients should treated accordingly in order to improve clinical responses and patient outcomes.

Comments

Popular posts from this blog

Dementia Research

Disclaimer: I am not a doctor so I cannot diagnose or offer treatments, I am sharing this information that is considered educational. Much of the research on dementia/Alzheimer's is centered on what is referred to as Tight Junction Proteins. These are proteins that act like clamps that hold tissues together in terms of neurological, these "clamps" hold the blood vessels together. And when the tight junction proteins become damaged, the blood vessels begin to "leak".  Science refers the tight junction proteins as barrier as in the blood brain barrier. They will also refer to as barrier integrity. AI says this:  Tight junction proteins are vital for various physiological processes, including the formation of barriers in the brain (blood-brain barrier), intestines, and other tissues. They also play a role in disease mechanisms when their function is disrupted. The barrier function occurs in the blood vessels, and they think that when they leak, this is affecting co...

Microbiome SCFAs & AutoImmunity

  Does SCFA impact immune and inflammatory pathways? Show thinking Yes, absolutely! Short-Chain Fatty Acids (SCFAs) are major players in controlling immune and inflammatory pathways, both within the gut and systemically. This is one of the most significant and exciting areas of research on SCFAs. Here's how they exert their control: Interaction with G-Protein Coupled Receptors (GPCRs): GPR41 and GPR43: These are the most well-studied SCFA receptors, found on various cell types throughout the body, including immune cells (e.g., neutrophils, macrophages, T cells), gut epithelial cells, and adipocytes. When SCFAs (particularly acetate, propionate, and butyrate) bind to these receptors, they trigger intracellular signaling pathways that can influence immune cell function, cytokine production, and inflammatory responses. Histone Deacetylase (HDAC) Inhibition: Butyrate (and to a lesser extent propionate) are potent inhibitors of HDACs. HDACs are enzymes that modify histones, proteins aro...
You can buy most of this at Kroger's, I listed the pictures below. The idea is that you are targeting the gut, the microbiome to be exact. I am not going to list out all the studies but they have discovered that the right bacteria in the gut can change a lot of things including metabolic, neurological, immune responses, weight gain and many other things.  Increasing the good bacteria such as bifidobacteria etc. can also suppress the bad bacteria which have been linked to numerous problems.  There are products that you can buy on Amazon and these will also support the microbiome by giving the nutrients they need.  Kroger's has the ones in the pictures below, you will find the Cleveland Kraut in the refrigerated section and so is the Kefir. Both of these are live foods meaning they contain the good bacteria. Sauerkraut as canned does not work since there are no live organisms.  You will have to experiment with the doses; I do a couple of tablespoons of the kraut and ju...