Skip to main content

Scientists search for the clocks behind aging brain disorders

Scientists search for the clocks behind aging brain disorders
To understand the link between aging and neurodegenerative disorders such as Alzheimer’s disease, NIH scientists compared the genetic clocks that tick during the lives of normal and mutant flies. They found that altering the activity of a gene called Cdk5 appeared to make the clocks run faster than normal, and the flies older than their chronological age. This caused the flies to have problems walking or flying later in life, to show signs of neurodegeneration, and to die earlier.

“We tried to untangle the large role aging appears to play in some of the most devastating neurological disorders,” said Edward Giniger, Ph.D., senior investigator at the NIH’s National Institute of Neurological Disorders and Stroke and the senior author of the study published in Disease Models & Mechanisms. “Our results suggest that neurodegenerative disorders may accelerate the aging process.”

On average, the normal flies in this study lived for 47 days. To create a genetic clock, Dr. Giniger’s team measured the levels of every gene encoded in messenger RNA molecules from cells from the heads and bodies of flies at 3, 10, 30, and 45 days after birth. This allowed the researchers to use advanced analysis techniques to search for the genes that seemed to be sensitive to aging, and create a standard curve, or timeline, that described the way they changed.

When they performed the same experiments on 10-day-old mutant flies and compared the results with the standard curve, they found that the flies were “older” than their chronological age. Altering Cdk5 activity made the brains of the flies appear genetically to be about 15 days old and their bodies to be about 20 days old.

Preclinical studies suggest that Cdk5 is a gene that is important for the normal wiring of the brain during early development and may be involved in some neurodegenerative disorders, including ALS, Parkinson’s and Alzheimer’s disease. In this study, Dr. Giniger’s team found that eliminating or increasing Cdk5 activity beyond normal levels shortened the lives of the flies to about 30 days. After 10 days of age, the manipulations reduced the distance flies could climb up tubes and the alterations caused older flies to have signs of neurodegeneration, including higher than normal levels of brain cell death and degradation.

More analysis showed that altering Cdk5 activity changed the level of several groups of genes that were also affected by aging, including those that control immunity, energy, and antioxidant activity.

To explore this idea further, the researchers tested the strength of the flies’ antioxidant defenses against toxic versions of several chemicals found in cells called oxygen free radicals. Initial experiments showed that aging reduced these defenses in normal flies. Three-day-old healthy flies lived for about 100 hours after exposure to free radicals, and that time decreased with age. In contrast, the defenses of Cdk5 mutant flies were even weaker as they died sooner than the control flies at all ages.

“Our results suggest that aging may not just predispose an individual to degeneration, as we thought. Acceleration of aging may actually be part of the mechanism by which degenerative disease disrupts the structure and function of the brain,” said Dr. Giniger. “We hope that our approach will help researchers untangle the mysteries behind several neurodegenerative disorders.”

His team plans to continue investigating the role of aging in the process of neurodegeneration.

Source:
https://www.ninds.nih.gov/News-Events/News-and-Press-Releases/Press-Releases/NIH-scientists-search-clocks-behind-aging-brain

Journal article:
http://dmm.biologists.org/content/11/3/dmm031161

#aging #neurodegeneration #cdk5 #fruitflies #genemutation #neuroscience
Photo

Comments

Popular posts from this blog

Dementia Research

Disclaimer: I am not a doctor so I cannot diagnose or offer treatments, I am sharing this information that is considered educational. Much of the research on dementia/Alzheimer's is centered on what is referred to as Tight Junction Proteins. These are proteins that act like clamps that hold tissues together in terms of neurological, these "clamps" hold the blood vessels together. And when the tight junction proteins become damaged, the blood vessels begin to "leak".  Science refers the tight junction proteins as barrier as in the blood brain barrier. They will also refer to as barrier integrity. AI says this:  Tight junction proteins are vital for various physiological processes, including the formation of barriers in the brain (blood-brain barrier), intestines, and other tissues. They also play a role in disease mechanisms when their function is disrupted. The barrier function occurs in the blood vessels, and they think that when they leak, this is affecting co...

Microbiome SCFAs & AutoImmunity

  Does SCFA impact immune and inflammatory pathways? Show thinking Yes, absolutely! Short-Chain Fatty Acids (SCFAs) are major players in controlling immune and inflammatory pathways, both within the gut and systemically. This is one of the most significant and exciting areas of research on SCFAs. Here's how they exert their control: Interaction with G-Protein Coupled Receptors (GPCRs): GPR41 and GPR43: These are the most well-studied SCFA receptors, found on various cell types throughout the body, including immune cells (e.g., neutrophils, macrophages, T cells), gut epithelial cells, and adipocytes. When SCFAs (particularly acetate, propionate, and butyrate) bind to these receptors, they trigger intracellular signaling pathways that can influence immune cell function, cytokine production, and inflammatory responses. Histone Deacetylase (HDAC) Inhibition: Butyrate (and to a lesser extent propionate) are potent inhibitors of HDACs. HDACs are enzymes that modify histones, proteins aro...
You can buy most of this at Kroger's, I listed the pictures below. The idea is that you are targeting the gut, the microbiome to be exact. I am not going to list out all the studies but they have discovered that the right bacteria in the gut can change a lot of things including metabolic, neurological, immune responses, weight gain and many other things.  Increasing the good bacteria such as bifidobacteria etc. can also suppress the bad bacteria which have been linked to numerous problems.  There are products that you can buy on Amazon and these will also support the microbiome by giving the nutrients they need.  Kroger's has the ones in the pictures below, you will find the Cleveland Kraut in the refrigerated section and so is the Kefir. Both of these are live foods meaning they contain the good bacteria. Sauerkraut as canned does not work since there are no live organisms.  You will have to experiment with the doses; I do a couple of tablespoons of the kraut and ju...